Next year, we may see the launch of the first true quantum computers.
The implications will be staggering.
This blog aims to answer three questions:
There's a lot to unpack here, so hang tight, and let's jump in!
Moore's Law (or the exponential growth of integrated circuits) is actually referring to the fifth paradigm of computation. Here's the list of the underlying technologies: (1) Electromechanical; (2) Vacuum Tube; (3) Relay; (4) Transistors; and (5) Integrated Circuits.
Quantum computers may well be the sixth paradigm, given that they work in a fashion that is entirely different from "classical" computers.
A classical computer performs operations using classical "bits" – these "bits" can be in only one of two states: "0" OR "1."
In contrast, a quantum computer uses 'quantum bits,' or 'qubits'. Thanks to a principle called quantum superposition, these qubits can have a value of "0", "1," or both "0 AND 1" at the same time.
This capability allows quantum computers to solve certain types of complex problems that are intractable for conventional computers. Frankly, really exciting problems for society today, as you'll see below.
For a tutorial on quantum computers, check out this short video.
The power of qubits is that they scale exponentially. A 2-qubit machine allows you to do four calculations at once. A 3-qubit machine can do eight calculations. A 4-qubit machine gives you 16 calculations, all simultaneously.
By the time you get to 300 qubits, you've got a computer that can do more "calculations" than there are atoms in the universe.
That's why the blog TechTarget described Quantum computing this way: "Development of a quantum computer, if practical, would mark a leap forward in computing capability far greater than that from the abacus to a modern day supercomputer, with performance gains in the billion-fold realm and beyond."
The implications of true quantum computing at scale are staggering, of extraordinary impact to society today (which is why I'm tracking it).
In my opinion, here are the Top 5 Applications:
Bottom Line: When quantum computing pans out, we'll be able to control the very building blocks of the universe.
The question is who is going to figure it out first…
There's a race going on – a race to prove something called "quantum supremacy."
Quantum supremacy is essentially the test that validates that the computer you have is in fact a quantum computer.
In the U.S., three major players are in the game right now:
(And perhaps a fourth -- D-Wave Systems. They've developed chips with qubits, but these haven't yet been conclusively proved to operate as a quantum computer.)
Both Rigetti Computing and Google believe they will reach "quantum supremacy" in the next 12 to 18 months.
Think about that: the next one to two years…
The revolution is coming fast.
To put this into perspective, I had a chance to catch up with Chad Rigetti, the CEO of Rigetti Computing (he'll be one of our amazing mastermind participants at the 2017 Abundance 360 Summit this January).
Below is a picture of the most powerful 'classical' computer on the planet, Tianhe-2 in Guangzhou, China.
(Tianhe-2: The most powerful supercomputer on the planet)
It costs $400 million.
The computer burns about 20 megawatts of electricity – enough to power 20,000 households.
And it's about half the size of a football field, with 3.2 million Intel cores.
President Obama, in the attempt to drive America's return to high-performance computing supremacy, declared that the U.S. would build an exoscale computer, 30x more powerful than Tianhe-2, by 2020.
The problem is this: With current technology, it will cost a billion dollars and will require a nuclear power plant to run the supercomputer.
"We need to do this," explains Chad Rigetti. "But there is another path. Quantum computing."
Below is a picture of two developmental systems in Rigetti's lab in Berkeley, CA.
(Developmental quantum computing systems, Rigetti Computing)
The big white cans about the size of a human are cooling systems, and inside each cooling system is a single quantum chip.
In these machines today, there is a 5-qubit processor.
The crazy part: A single chip with about 50 to 60 qubits on it would be more powerful than the entire Tianhe-2, a half-a-football-field-sized machine…
This is what quantum computing unlocks.
Rigetti is rapidly developing quantum integrated circuits and the software platform that will allow developers to build on top of them.
Along with efforts at Google, IBM, D-Wave, and many other companies and research labs around the world, we are rapidly approaching a quantum computing revolution.
Get ready.
This is the sort of conversation we explore at my 250-person executive mastermind group called Abundance 360.
The program is highly selective. If you'd like to be considered, apply here.
Share this with your friends, especially if they are interested in any of the areas outlined above.
P.S. Every week I send out a "Tech Blog" like this one. If you want to sign up, subscribe here for this and Abundance Insider.
P.P.S. My dear friend Dan Sullivan and I have a podcast called Exponential Wisdom. Our conversations focus on the exponential technologies creating abundance, the human-technology collaboration, and entrepreneurship. Head here to listen and subscribe.